Monthly Archives: March 2012

Science journalism blows it, dolphin rape edition.

A few weeks ago I got into a discussion on Twitter with Ananyo Bhattacharya, online editor of Nature News and writer for The Guardian’s science section, after he put out a call asking for ways to improve science journalism. During that conversation, I argued that one way to do this is to create a culture of journalism that values scientific knowledge and expertise as a core value[1]. Ananyo seemed unimpressed with my viewpoint, and suggested that the main point of science journalism was to pry into the dark corners and root out biases, fraud, and the like in science. He views scientific communication and scientific journalism as two distinct things (and thinks that journalists doing ‘PR for science’ is ‘drippy’). Indeed, when asked directly during a Royal Institute forum on science journalism whether journalists should read the original papers behind the stories that they write, he dismissed the idea:

“If the question is ‘must a good science journalist read the paper in order to be able to write a great article about the work’ then the answer is as I said on Tuesday ‘No’. There are too many good science journalists who started off in the humanities (Mark Henderson) – and some who don’t have any degrees at all (Tim Radford). So reading an academic research paper cannot be a prerequisite to writing a good, accurate story … So I stick to the answer I gave to that question on the night – no, it’s not necessary to read the paper to write a great story on it (and I’ll also keep the caveat I added – it’s desirable to have read it if possible).”

He further suggests, in the same comment (original source), that if journalists had to read original papers than no one could report on particle physics[2].

I’m not going to try and hide my bias here: I don’t like Ananyo’s viewpoint on this. I don’t think that it will lead to good writing, either of the communication or journalistic variety, but more importantly I think that forcing journalists to read the papers before they write an article might have stopped stupid @#$@ like what happened today from happening at all.

The story: I received an e-mail this morning from Dr. Bill Sherwin, a member of the Evolution and Ecology Research Centre (E&ERC) here at my current institution, the University of New South Wales. Bill is one of the authors on a new paper coming out in the Proceedings of The Royal Society (B), entitled ‘A novel mammalian social structure in Indo-Pacific bottlenose dolphins (Tursiops sp.): complex male-male alliances in an open social network’. The paper is a nice little exploration of the characteristics of social networks in dolphins found in Western Australia; in essence, they were testing whether two hypotheses about the nature of these social networks were tenable given the data they’ve observed. In particular, they tested whether dolphins show signs of engaging in ‘community defence’, where higher order alliances of dolphins form to patrol and defend a larger community range, similar to chimpanzees, or if it follows a ‘mating season defence’ model where male groups shift their defence to smaller ranges or sets of females when it’s mating season. The comparison to terrestrial species with complex social cognition (such as primates and elephants) is an interesting one, because it provides yet more insight into the relationship between the development of complex cognitive faculties and social relationships.

So far, so good. Bill gave a simple explanation of the paper in an email that he was sent out to the E&ERC this afternoon:

We put out a paper that said “dolphin male alliances are not as simple as other species”, but it has stirred up quite a lot of interest, because somewhere in it, the paper mentioned “bisexual philopatry”, which when translated out of jargon means  “males stay near where they were born, AND females stay near where they were born” – nothing more or less than that.

‘Quite a lot of interest’ is one way to put it. ‘Idiots crawling out of the woodwork’ is another. Here’s the headlines of four stories that were written about this paper:

Dolphins ‘resort to rape’: Dolphins appear to have a darker side, according to scientists who suggest they can resort to ‘rape’ to assert authority. [The Telegraph]

Male dolphins are bisexual, US scientists claim. []. (Note that this is an Australian website, and Bill is Australian).

Male bottlenose dolphins engage in extensive bisexuality. []

And by far the best of the lot (guess who it’s from?):

The dark side of Flipper: He’s sexual predator of the seas who resorts to rape to get his way. [That’s right, The Daily Mail].


Are you kidding me? If the ‘writers’ of these articles had read the paper, they would have noticed that it contains nothing about the sexual behaviour of the dolphins they studied, bisexual or otherwise, aside from brief mentions of the possible consequences of social networks on reproductive success. It certainly didn’t mention anything about bisexual behaviour, homosexual behaviour, or rape. Now, it’s well known that dolphins engage in homosexual behaviours, and I’ve seen papers arguing that they use sexual coercion as well (Rob Brooks confirms this). But these topics have nothing to do with this paper at all. Even a cursory glance through the original source would have killed these headlines – and the first few paragraphs of the Mail story – which aren’t just a miscommunication but border on outright fabrication. The articles themselves are weird mixes of sensationalist headline with a regurgitated paraphrasing of the much better Discovery News piece that they are treating as the primary source. Here’s the problem, though: it’s Discovery News that makes the original mistake about ‘bisexual philopatry’, interpreting it as bisexual behaviour (hot male dolphin-on-dolphin action, as it were). A reporter who had read the original source could have corrected that mistake fairly easily, or could even have been driven to ask further questions. Without that, however, the press cycle grinds mercilessly forward to Flipper the bisexual rapist.

For my part, I was happy to see that James Randerson’s informal survey of science and health writers showed that many of them do read the original papers. And the kind of people who write things about science that I trust, whether they’re professionally trained in science or not, are not the sort of people who do boneheaded things like this. Ananyo might retort that ‘asking questions’ is enough (he suggested as much in his comment above). Matt Shipman said much the same thing in the piece that Ananyo was commenting on. Yet of all people, Ananyo should be wary of this answer, with his focus on investigative science journalism. A scientist writing an email or doing a phone interview can tell you just about anything that you want to hear; a press officer can write a terrible press release; a wire service will probably distort what comes down the line. But a scientific paper is the One, True Source. It is a public record of what was done, and it is the first and best place to start for answers about a study or a scientific topic[3].

Don’t mistake my criticism of Ananyo’s position of reading scientific papers as a general attack on scientific journalism. I think that there’s a lot of great science journalism out there, and that there are even more great science journalists and communicators. Despite the perennial swirl of internet discussion on the topic, I don’t actually think that the whole field is hopelessly broken like some seem to. I just happen to believe that scientific papers, the products of our time and energy as researchers, form an integral part of the process of talking about science (and it’s part of the reason for my support for Open Access publishing). And I think that disgraceful trainwrecks like the reporting on Bill’s paper are a perfect illustration of the need for these papers to be a part of that process.

[Update: Rob Brooks has also discussed this issue over at TheConversation].


[1] Because of Twitter’s space constraints, this was misconstrued to mean that I was agitating for all science journalists to have a Ph.D. in a scientific discipline. Though I wouldn’t be upset if this happened, that’s not what I meant: it is more than possible to have a deep love and knowledge of science without having a degree in a scientific field. Hell, Carl Zimmer probably knows more about viruses and evolutionary biology than I do, and his only training is an undergraduate degree in English. My argument is only that having scientific training increases the probability of a writer or journalist having a good grasp on how science works, not that it’s the only way for that to happen. I will continue to argue, though, that those having a love of science (professional or amateur) will, on average, produce better science writing and science journalism than those who don’t.

[2] He also claimed that most of the people asking journalists to read papers are biologists and medical people, who write easier-to-understand papers. I would have to turn this back on him: if biology and medical papers are so easy to understand, why shouldn’t journalists read them every time?

[3] Yes, there’s no guarantee that what is written in the paper is true. But the chances of detecting fraud are essentially zero if you don’t read the paper to begin with, and if you’re a journalist looking to catch the next Stapel, chances are that you’ll have to wait for the scientific community to find him and tell you about it anyways.

Tagged ,

Group selection, again. Yay.

I was amused to see that David Sloan Wilson took a weird poke at Dawkins, got thrashed by Jerry Coyne, and didn’t like it.  In fact, I was going to leave this as a link post, but while searching for a link to Coyne’s piece (Wilson can’t seem to figure out how to embed links to anything but his own blog in his posts) I came across a post by a blogger who calls him/herself “The Verbose Stoic”.  This piece is problematic on several points, but discussing this is going to take some space so I’ll do it here instead of a comment on Verbose Stoic’s blog;   from here on, I’m going to refer to him/her as VS.

VS starts off by questioning “examples”:

 What I want to talk about is the objections that Coyne raises against Wilson’s group selection theory:

Dawkins’s argument against the efficacy of group selection was that this form of selection is usually unsuccessful because groups are vulnerable to subversion from within by those selfish replicators. That is, “cheating” replicators that are “good” for individuals but bad for the group as a whole will tend to propagate themselves. Yes, altruism may help groups propagate, but altruistic groups are susceptible to invasion by cheaters unless the “altruism” is based on kin selection or individual selection via reciprocity.

That’s the main one, but he goes on to fill in more later:

Dawkins’s (and my) beef with group selection as a way to evolve traits that are bad for individuals but good for groups is that this form of selection is inefficient, subject to subversion within groups, and, especially, that there’s virtually no evidence that this form of selection has been important in nature.

Let me deal with the two minor ones before getting back to the main event. Starting with the last one, we can see that it’s a bad argument, because what Coyne is doing here is saying that one of the reasons to reject the examples Wilson’s giving of cases where group selection has been important in nature is … that you haven’t found examples of cases where it has been important in nature. Except, perhaps, for the specific cases Wilson is citing. You can’t in any way reasonably claim that the fact that you haven’t found examples of it yet means that you can dismiss this proposed example.

Look, Wilson isn’t citing any specific cases of group selection occurring in nature, mostly because there aren’t any.  When I say that, I mean that Wilson hasn’t been able to demonstrate that a trait arose because of group selection and not kin selection or natural selection or any other evolutionary force.  Wilson’s argument is that (1) group selection (a.k.a. “new” group selection or multi-level selection) is something different than any other variety of selection, and (2) that it is responsible for the evolution of traits such as altruism.  But (1) group selection reduces mathematically to inclusive fitness (follow the links in my previous post), and so (2) is trivially true.  Sure, it arose by “group selection”, but that’s an empty statement.  Wilson’s ‘proposed example’ is a theoretical model that was dealt with when he proposed it nearly 40 years ago (Wilson, 1975), and though it’s been refuted dozens of times since, he keeps holding on to it and insisting that he’s already won.   I’ll quote at length from West et al. (2007) to drive home the point:

It has since been shown that kin selection and new group selection are just different ways of conceptualizing the same evolutionary process. They are mathematically identical, and hence are both valid (Hamilton, 1975; Grafen, 1984; Wade, 1985; Frank, 1986a, 1998; Taylor, 1990; Queller, 1992; Bourke & Franks, 1995; Gardneret al., 2007). New group selection models show that cooperation is favoured when the response to between group selection outweighs the response to within-group selection, but it is straightforward to recover Hamilton’s rule from this. Both approaches tell us that increasing the group benefits and reducing the individual cost favours cooperation. Similarly, group selection tells us that cooperation is favoured if we increase the proportion of genetic variance that is between-group as opposed to within-group, but that is exactly equivalent to saying that the kin selection coefficient of relatedness is increased (Frank, 1995a). In all cases where both methods have been used to look at the same problem, they give identical results (Frank, 1986a; Bourke & Franks, 1995; Wenseleers et al., 2004; Gardner et al.,2007).

VS also isn’t happy about “efficiency”:

The first one is also a pretty bad argument when you look at evolution. The argument is that Wilson’s proposed solution would be inefficient, but it seems to me that one of the main thrusts of evolution is that it can indeed be — and often is — inefficient but as long as it works, that’s not a problem. When has it become a criteria for evolutionary explanations that it achieve maximal or even reasonable efficiency. To go down that route would risk re-introducing a need for a designer, to ensure that the mechanisms stayed efficient. That can’t be what Coyne wants. But, again, why is efficiency even a factor? Why would you sort evolutionary arguments by efficiency? Being more or less efficient isn’t a hallmark of evolutionary mechanisms, so if two mechanisms are proposed but one is more efficient than the other that says absolutely nothing about which one is more likely to be true.

Efficiency is a perfectly fine criterion to use, though the term is a little vague as used here.  Assuming that group selection is different from inclusive fitness (which it’s not):  if group selection results in an very slow rate of change in gene frequencies or a lower probability of fixation compared to inclusive fitness, then inclusive fitness is more ‘efficient’ and is more likely to be the cause of a trait fixating in a population.  At least, that’s how I would use the term;  I don’t want to put words in Dr. Coyne’s mouth, though I think that my view here is consistent with his usage and with the literature I’ve reviewed.  In other contexts, I’ve also seen ‘efficiency’ used to say that group selection wouldn’t actually the enhance relative fitness of altruism vs ‘cheating’ (which isn’t a great term for this, as I discuss below), which ends up in the same place.
In any case, VS seems to be confusing efficiency (whether Dawkins / Coyne would use it the way I do or not) with design.  Adaptations are often very badly designed, such as the case of the amazing recurrent laryngeal nerve, but that doesn’t say anything about how fast (or with what probability) genes for those adaptations spread through populations as a result of natural selection.  Even if group selection works the way that Wilson thinks it does, reasoning from the published theoretical models it’s easy to see why it would be an extremely inefficient process with its cycles of groups / reproduction as compared to overlapping generations with continual selection pressures.
VS finally goes onto what he thinks is the biggest error that Coyne makes:

That leaves us with the main complaint: cheaters. The main issue here is that there is an issue raised against the individual selection explanations of altruism as well, even kin and reciprocal altruism and it is … cheaters. Cheaters will benefit if they can get away with it, and so those individuals will prosper and those who are altruistic will be outstripped, and so altruism is not self-sustaining at the individual level. To get around this, the proponents of evolutionary explanations for altruism end up appealing to cheater detection mechanisms […]

Additionally, it seems to me that group selection can actually get this without having to apply specific cheater detection mechanisms. After all, group selection would imply that the relevant competing entity is the group. Thus, if a group has a significant percentage of people who are altruistic, then it outperforms groups that don’t. Thus, if you have a group where this happens and where too large a percentage of the group are cheaters, then that group will cease to get those benefits and be outcompeted and presumably eventually exterminated by the groups where that does not happen. Thus, group selection here becomes self-sustaining; if you are above or at the magical percentage that means you benefit from being altruistic, you benefit over other groups as long as it stays there, but if it ever drops below that your group may well collapse and your individuals, then, all lose. Note that we would still see cheater detection mechanisms emerge because they are mechanisms that make the group stable and so less likely to fall below that percentage and collapse.

It seems like VS might be on the verge of confusing old and new school group selection, as the bolded statements (my emphasis) suggest.  West et al.’s paper has a great figure that shows the difference between the two:

In the text of their article, they point out that “[a]nother way of looking at this is that the new group selection approach looks at the evolution of individual characters in a group structured population, whereas the old group selection approach looks at the evolution of group characters”.  VS’s own words make him sound like a disciple of Wynne-Edwards, which would be unfortunate since Wynne-Edwards was decisively crushed by George Williams in the 1960s.  But even if he’s just poorly recapitulating Wilson’s models, VS is still wrong on the evolution of altruism.  There are a number of possible explanations for altruism, including inclusive fitness, but I don’t want to get into a long conversation on how altruism might have evolved because I would have research and then write an inconveniently long book to do so.

Having said that, Coyne’s use of “cheating” (even in quotations) is a little unfortunate, because it overlaps with the literature on Prisoner’s Dilemma  and cooperation.  Cooperation and altruism are not the same concept (again, see West et al. for a good breakdown of the different concepts, or any text on social evolution);  altruism might be a subset of cooperation, depending on how you define the terms, but usually altruism comes at a cost to the altruist while cooperators do not necessarily pay a cost to cooperate.  “Cheating detectors” is more appropriate for a conversation about cooperation than altruism  (see also Figure 2 of this paper), which makes the rest of VS’s argument difficult to respond to.  I think that Coyne is using ‘cheating’ to refer to individuals who receive the benefit of altruistic acts without paying the price of altruism, but that’s not the same as cheating in models of cooperation.  (Honestly, ‘cheating’ isn’t a great word on a lot of grounds, including confusion with other areas such as signalling and an implication of conscious intent where none is necessary).

Returning to the posts that started this digression:  my honest belief is that this group selection debate should have been over years ago, but I will still support Wilson’s right to continue trying to make his case.  If he’s going to attack people like Dawkins and Coyne, though, he’d better learn to be prepared for them to hit back.  And though it’s unlikely that either of them will ever read this post, I’d like to tell them that they’re not alone.

P.S. Can I take this opportunity to point out a further example of Wilson claiming that people agree with him when they don’t?  If you read the end of Wilson’s second piece, he says:

For readers who are up for a challenge and want to learn more about the theoretical basis and empirical evidence for group selection from someone other than myself, I recommend Steven A. Frank’s “Natural Selection. III. Selection vs. Transmission and Levels of Selection (Journal of Evolutionary Biology, 2011). For Frank, it goes without saying that natural selection is a multilevel process and that the group level is often a significant evolutionary force.

I’ve actually read that paper.  In it, Frank once again points out that kin selection and group selection are the same thing:

The equivalence of r and Hamilton’s formal theory of kin selection establishes the exact equivalence of multilevel group selection and kin selection.

And then, after a long analysis, he compares the usage of the two methods in a section entitled (tellingly): Reasons to favour kin selection over group selection.  It contains exactly what the title says.  If you can get it and you like technical discussions of evolutionary biology, I urge you to read the paper yourself.  If you don’t, then just do me a favour and don’t accept Wilson’s claims about this paper at face value.


David Sloan Wilson. A theory of group selection. Proceedings of the National Academy of Sciences, 72 (1):143–146, 1975.

S. A. West, A. S. Griffin, and A. Gardner. Social semantics: altruism, cooperation, mutalism, strong reciprocity and group selection. Journal of Evolutionary Biology, 20(2): 415–432, 2007.

Tagged , , , , , ,

It’s true!

As seen on Twitter:

The "what X does" meme for evolutionary biologists...

I really have nothing to add to this...

Also, don’t miss the closely related Scientists version…